The Relationship between PON1 phenotype and PON1-192 genotype in detoxification of three oxons by human liver.

نویسندگان

  • Elaine Mutch
  • Ann K Daly
  • Faith M Williams
چکیده

Phosphorothioate pesticides (OP) such as diazinon, chlorpyrifos, and parathion are activated to highly toxic oxon metabolites by the cytochromes P450 (P450s), mainly in the liver. Simultaneously, the P450s catalyze detoxification of OP to nontoxic dearylated metabolites. The oxon is then detoxified to the dearylated metabolite by PON1, an A-esterase present in the liver and blood serum. The aims of this study were to define the influence of PON1-192 genotype and phenotype on the capacity of human liver microsomes (n = 27) to detoxify the oxons diazoxon, chlorpyrifos-oxon, and paraoxon. Near physiological assay conditions were used to reflect as closely as possible metabolism in vivo and because the hydrolytic activity of the allelic variants of PON1-192 are differentially affected by a number of conditions. The rates of hydrolysis of diazoxon, chlorpyrifos-oxon, and paraoxon varied 5.7-, 16-, and 56-fold, respectively, regardless of PON1-192 genotype. Individuals with the PON1-192RR genotype preferentially hydrolyzed paraoxon (p < 0.01), and the R allele was associated with higher hydrolytic activity toward chlorpyrifos-oxon, but not diazoxon. There were strongly significant relationships between phenylacetate and paraoxon hydrolysis (p < 0.001) and phenylacetate and chlorpyrifos-oxon hydrolysis (p < 0.001), but not between phenylacetate and diazoxon hydrolysis. These data highlight the importance of PON1 phenotype for efficient hydrolysis of paraoxon and chlorpyrifos-oxon, but environmental and yet unknown genetic factors are more important than PON1-192 genotype in determining capacity to hydrolyze diazoxon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of paraoxonase polymorphisms in the induction of micronucleus in paraoxon-treated human lymphocytes.

Human paraoxonase-1 (PON1) is a high-density lipoprotein-associated enzyme that has a role in the detoxification of organophosphorus compounds by hydrolyzing the bioactive oxons. PON1 polymorphims are responsible, at least in part, for the variation in the catalytic activity and expression of the enzyme and have been associated with susceptibility to organophosphorus pesticide toxicity, mainly ...

متن کامل

Relationship of PON1 192 and 55 gene polymorphisms to calcific valvular aortic stenosis.

INTRODUCTION AND OBJECTIVES Paraoxonases may exert anti-atherogenic action by reducing lipid peroxidation. Previous studies examined associations between polymorphisms in the paraoxonase 1 (PON1) gene and development of coronary artery disease (CAD), with inconsistent results. Given the similarities in clinical and pathophysiological risk factors of CAD and calcific aortic valve stenosis (CAVS)...

متن کامل

Low paraoxonase activity in type II diabetes mellitus complicated by retinopathy.

Human serum paraoxonase 1 (PON1) is located on high-density lipoprotein and has been implicated in the detoxification of organophosphates, and possibly in the prevention of lipid peroxidation of low-density lipoprotein. PON1 has two genetic polymorphisms, both due to amino acid substitutions: one involving glutamine (Q genotype) and arginine (R genotype) at position 192, and the other involving...

متن کامل

Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1(192) or PON1(55) genotype.

The paraoxonase (PON1) PON1-Q192R and PON1-L55M polymorphisms have been inconsistently associated with vascular disease. Plasma PON1 activity phenotypes vary markedly within genotypes and were, therefore, expected to add to the informativeness of genotype for predicting vascular disease. The case-control sample included 212 age- and race-matched men (mean age 66.4 years). The 106 carotid artery...

متن کامل

بررسی مقایسه‌ای فراوانی پلی‌مورفیسم Gln/Arg192آنزیم پارااکسوناز1 در افراد مبتلا به گرفتگی عروق کرونری و گروه کنترل

  Background & Aim: Serum paraoxonase (PON1) is an HDL (high density lipoprotein) associated esterase that prevents the oxidation of LDL (low density lipoprotein). A common polymorphism in coding region of the paraoxonase gene involving a Gln (Q) to Arg (R) interchange at position 192 has been demonstrated to affect PON1 activity. It has been shown that R alloenzyme is less efficient at prevent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2007